弾性異方性を考慮した有限要素多結晶モデル

Finite element polycrystal model considering elastic anisotropy

大貫 貴久 1)

Takahisa Ohnuki¹⁾

Abstract : I improved the finite element polycrystalline model and developed a model that takes elastic anisotropy into consideration. I changed the elastic matrix and grain rotation to take into account elastic anisotropy. I also performed some computational experiments using a finite element polycrystalline model that takes elastic anisotropy into account.

Keywords : Finite element polycrystal model, Elastic anisotropy, Lattice strain, Neutron diffraction experiments

1. 緒言

近年, 塑性変形の研究のために結晶塑性論と有限要素法 を融合させたモデルが多く使われるようになった. 結晶塑 性論とは、すべり系を転位が移動すると塑性変形すると考 え、単結晶と多結晶の変形を結び付けた理論である. 初め に Taylor によって提案され, Bishop, Hill により理論的に 洗練されていった[1],[2]. しかし, Taylor 理論では多結晶 集合体内の各結晶粒の塑性ひずみは全て等しいと考えて いるため、粒界の変位の連続性を満足するが、粒界におけ る力の釣合いは成り立たない. Sachs は多結晶集合体内の 各結晶粒の力は全て等しいと考える理論を提案したが、こ のモデルでは粒界のひずみの連続は保たれない[3].一方, 有限要素法は、1954年にボーイング社の技術者が、三角 要素を使用した直接剛体法を提案したのが始まりとされ, その後,有限要素法として確立されていく.有限要素法で あれば、変位の連続性と力の釣合いを両立することができ る.結晶塑性論と有限要素法を融合させたモデルでは,要 素1つを結晶粒1つと考えて、各結晶のすべりを考慮し、 1972年に宮本、神馬らにより提案され、その後、多くの研 究者により発展してきた[4],[5]. その中でも高橋が提案し た有限要素多結晶モデル (FEPM: Finite Element Polycrystal Model)は、アルミニウムをベースにした実験結果とよく 一致し、応力--ひずみ曲線,異方性とr値の関係などでよ い結果を得ている[6],[7]. しかし,同じFCC(面心立方格 子) 系の銅やオーステナイト系ステンレス鋼では、実験と 一致しないところもある.アルミニウムの特徴として弾性 異方性が小さいことから,高橋は計算時間を短くするため に等方として計算を行ってきた.しかし近年,その場引張 中性子回折実験などから, 配向が異なる粒群(同じ結晶配 向を持つ結晶粒の集合)は弾性域で応力分配していること が確認され、塑性にも影響を及ぼしていると考えられる [8],[9]. そこで、私は異方性が取り扱えるように異方弾性

マトリックスと回転行列を使い FEPM を改良し、オース テナイト系ステンレス鋼の粒群のひずみ挙動を再現した [10].本稿では、これらについて詳細に変更点と具体的な 計算方法についてまとめた.

2. FEPM の計算概要と修正箇所

FEPM の修正箇所を理解し易くするために初めに FEPM の 計算の概要について説明する. FEPM では、1つの結晶を1つ の立方体要素とみなすが、図1に示すように1つの立方体要素 は5つ三角錐要素に分割でき、対称性を考慮して10個のサブ要 素で構成されていると考える. これにより、粒内不均質を考慮 することができる.

図1 1つの立方体要素を構成する三角錐要素分割

この立方体要素をn³個(n×n×n 個)のブロックとし、図2に示 すように、ブロックが三次元的に積み重ねられているとする.

図2 FEPM における立方体要素の n×n×n ブロック

1)東京都立産業技術高等専門学校 ものづくり工学科 ロボット工学コース

このような要素に対して FEPM では、剛性方程式を次式 で与える.

$$K \cdot \dot{u} = F + F^{P} \tag{1}$$

$$K = \int B^T \cdot D \cdot B \cdot dV \tag{2}$$

$$F^{P} = \int B^{T} \cdot \left(D \cdot \dot{\varepsilon}^{P} - \sigma^{1} - \dot{\sigma} \right) \cdot dV \qquad (3)$$

ここで, B, B^T, K, Dは, それそれ, 形状関数, 形状関 数の転置行列, 剛性マトリックスおよび弾性マトリック スであり, 全て既知である. FとF^pは, それぞれ, 外力 と塑性による等価外力である. 負荷開始時は弾性変形の みなので FPはゼロであり, 通常の有限要素法と同じよう に, 境界条件として変位増分uか力 Fが与えられれば解 くことができる.

降伏して塑性変形が始まった場合,全体のひずみ増分 は、塑性ひずみ増分をやと弾性ひずみ増分の和と考えて弾 塑性分解を行いフックの式を用い、負荷除荷に伴う残留 ひずみは、計算の簡略化のため全て塑性ひずみとして近 似、仮想仕事の原理より次式が得られる.

$$\sigma = D \cdot \left(\dot{\varepsilon} - \dot{\varepsilon}^p \right) + \sigma^1 + \dot{\sigma} \tag{4}$$

ここで、有限要素法の要領で変位増分uと形状関数 B からひず み増分をは求まり、 σ¹ は一つ前の応力で、 のは Jaumann 増分で あり、 σ¹ と回転成分で求められるので既知である. 塑性ひずみ 増分をpは、各すべり系のせん断ひずみ増分yによって、次式で与 えられる.

$$\dot{\varepsilon}^{p} = \sum_{r} C^{(r)} \cdot \dot{\gamma}^{(r)} \tag{5}$$

ここで, C⁰は, r番目のすべり系における Schmid テンソルであ る. 一般的に FCC (面心立方格子) のすべり系は{111}<110>で 12 通りであり, BCC (体心立方格子) のすべり系は{110}<111>, {112}<111>, {123}<111>で 48 通りである. また, Schmid テン ソルは次式で与えられる.

$$C_{ij}^{(r)} = \frac{1}{2} \left(a_i^{(r)} \cdot b_j^{(r)} + a_j^{(r)} \cdot b_i^{(r)} \right)$$
(6)

 $a^{(r)}$ は結晶粒のすべり面の単位法線ベクトルの成分, $b^{(r)}$ はすべ り方向の単位ベクトル成分である.各結晶粒の配向はX線回折 などの極点図のデータで得るか,または、ランダム配向として 乱数を用い,Euler角で与える.よって,結晶の配向は既知であ り、Schmidテンソルを求めることができる.せん断ひずみ増分 $\dot{\gamma}$ は、降伏条件としてSchmid則に従うとして、次の条件を適用 する. $\tau^{(r)}$ はr番目のすべり系の分解せん断応力であり、 $k^{(r)}$ は r番目のすべり系における降伏せん断応力である.

$$\begin{aligned} \tau^{(r)} \cdot \dot{\gamma}^{(r)} &> 0 \quad \text{for } \left| \tau^{(r)} \right| = k^{(r)} \\ \dot{\gamma}^{(r)} &= 0 \quad \text{for } \left| \tau^{(r)} \right| < k^{(r)} \end{aligned}$$
(7)

実際の計算では、以下のように行っている.

$$\xi^{(r)} \cdot \dot{\gamma}^{(r)} > 0 \quad \text{for} \quad \xi^{(r)} \cdot \tau^{(r)} = k^{(r)}$$
(8)
$$\dot{\gamma}^{(r)} = 0 \quad \text{for} \quad \xi^{(r)} \cdot \tau^{(r)} < k^{(r)}$$

ここで、 $\xi^{(r)} = sign(\tau^{(r)})$ であり、 $\chi^{(r)} = \xi^{(r)} \cdot \dot{\gamma}^{(r)}$ と考えて 次式を用いて逐次累積法による繰返し計算を行う.

$$\chi_{(i)}^{(r)} = \chi_{(i-1)}^{(r)} + \left(\xi^{(r)} \cdot \tau^{(r)} - k^{(r)}\right) \cdot \frac{\Delta \rho}{2G}$$
(9)

 $\Delta \rho$, G は, それぞれ, 繰返し計算のステップ幅と剛性率であり, 初期値 $\chi_{(0)}^{(r)}$ はゼロとする. すべり系 r を変えて繰返し数 i が増え るたびに F^p を更新して剛性方程式(1)を解く. 従って, $\tau^{(r)}$ は 更新でき, 繰返し計算中に $\chi^{(r)} < 0$ の時は, そのすべり系は $\chi^{(r)} = 0$ として全体の繰返し計算を行い,全ての結晶粒,全て のすべり系について $\chi^{(r)}$ が変化しなくなったら,収束したとし て解が確定する. これは転位が1つでも移動すると材料全体の バランスが変化して結晶粒の応力が緩和されたことを自動的に 再現している.なお、この繰返し計算では、計算メモリーを少 なくするためにブロック合計のKマトリックスはハーフバンド マトリックスに格納され、収束計算時間を短縮するためにコレ スキー法が用いている.

さらに、解が得られた条件について、加工硬化条件に従い降 伏せん断応力を更新し、Hosford の数学的回転則から結晶粒の剛 体回転角(Euler 角)を求めて、次の計算の準備をする.以後、 新たに増加させた外力を与えて繰返し計算する.また、得られ たミクロの応力、ひずみ、回転から、マクロな応力、ひずみを 算出する.

弾性異方性にするために変更点について説明する.等方性の 場合,等方弾性マトリックスを1度作れば,結晶の配向にかか わらず一定であるが,異方性の場合,異方弾性マトリックスD を作り,各結晶粒の配向に合わせて回転させた弾性マトリック スD'にする必要がある.また,各ステップでの外力を与えると 結晶粒が回転するため,繰返し弾性マトリックスD'を計算して 求める.ここで,様々な配向により式(2)からブロック合計の Kマトリックスが作られ,剛性方程式(1)を逐次累積法で解く ことになるが,コレスキー法の適用条件は満たされているので, 解を得る計算方法の変更は必要ない.

3. 弾性異方性の取り扱い

高橋のFEPM では、ヤング率とポアソン比を与え、等方弾性 マトリックスを作っている.作られた等方弾性マトリックスは 次のようなる.

	(D_{1111})	D_{1122}	D_{1122}	0	0	0)	
	D ₁₁₂₂	D_{1111}	D_{1122}	0	0	0	(10)
ח	D{1122}	D_{1122}	D_{1111}	0	0	0	
D=	0	0	0	$D_{1111} - D_{1122}$	0	0	
	0	0	0	0	$D_{1111} - D_{1122}$	0	
	0	0	0	0	0	$D_{1111} - D_{1122}$	

DimとDin2のみからなり, D232 = D3131 = D1212 = D1111 - D1122 の条件が成り立つ. 一方, 異方弾性マトリックスを考える場合, 結晶は対称性を有しており, FCC や BCC の(100), (010), (001) 面の法線方向を X, Y, Z 軸に一致させた場合, 次のようにな る.

	(D_{1111})	D_{1122}	D_{1122}	0	0	0)	
D=	D ₁₁₂₂	D_{1111}	D ₁₁₂₂	0	0	0	(
	D ₁₁₂₂	D_{1122}	D_{1111}	0	0	0	
	0	0	0	D_{1212}	0	0	
	0	0	0	0	D_{1212}	0	
	0	0	0	0	0	D_{1212}	

よって、D₁₁₁₁, D₁₁₂, D₁₂₁の3変数を直接入力するように変 更した.また通常,各結晶粒の(100),(001),(001)面の法線方向 は、X,Y,Z軸に一致していないため、座標回転する必要があ る.先に述べたようにSchmid テンソルを求めるために,結晶の 配向が Euler角で与えられている.Euler角は,立方格子の(100), (010),(001)面の法線方向をX,Y,Z軸に一致している状態か らの角度で与えるので,同じ変換マトリックスを使うことがで きる.ただし,Schmid テンソルは2階のテンソルであり、弾性 マトリックスは4階のテンソルなのでそのままでは使えない. そこで,2階のテンソルである応力テンソル,ひずみテンソル とフックの式を用いて変換マトリックスを作成した.Euler角 から得られた変換マトリックスRが,次式で与えられたとする.

$$\begin{bmatrix} R_{ij} \end{bmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{pmatrix}$$
(12)

2 階のテンソルである結晶座標系の応力テンソルσと全体座 標系の応力テンソルσ'の座標変換は次式で与えられる(添え字の指数は省略する).

$$[\sigma] = [R] \cdot [\sigma'] \cdot [R]^T$$
⁽¹³⁾

応力テンソルは9成分あるが、フックの式に適用するため応力 は6成分にすると次式が得られる.

$$[\sigma] = [L_1] \cdot [\sigma'] \tag{14}$$

ここで変換マトリックス
$$L_1$$
は、次のようになる.
 $\begin{pmatrix} R_{1}^2 & R_{2}^2 & R_{3}^2 & 2R_2 \cdot R_3 & 2R_3 \cdot R_1 & 2R_1 \cdot R_2 \end{pmatrix}$

 R_{22}^{2} R_{21}^{2} R_{23}^{2} $2R_{22} \cdot R_{23}$ $2R_{23} \cdot R_{21}$ $2R_{21} \cdot R_{22}$ R_{31}^{2} R_{32}^{2} R_{33}^{2} $2R_{32} \cdot R_{33}$ $2R_{1} \cdot R_{2}$ $2R_{33} \cdot R_{31}$ [L] = $R_{21} \cdot R_{51} \ R_{22} \cdot R_{52} \ R_{23} \cdot R_{33} \ R_{22} \cdot R_{33} + R_{32} \cdot R_{23} \ R_{23} \cdot R_{31} + R_{33} \cdot R_{21} \ R_{21} \cdot R_{32} + R_{31} \cdot R_{22}$ $R_{31} \cdot R_{11} \quad R_{32} \cdot R_{12} \quad R_{33} \cdot R_{13} \quad R_{32} \cdot R_{13} + R_{12} \cdot R_{33} \quad R_{33} \cdot R_{11} + R_{13} \cdot R_{31} \quad R_{31} \cdot R_{12} + R_{11} \cdot R_{32} + R_{12} \cdot R_{13} + R_{12} \cdot R_{13} + R_{12} \cdot R_{13} + R_{13} \cdot R_{14} + R_{13} \cdot R_{14} + R_{15} \cdot R_{15} + R_{15} \cdot R$ $\begin{pmatrix} R_{11} \cdot R_{21} & R_{12} \cdot R_{22} & R_{13} \cdot R_{23} & R_{22} \cdot R_{23} + R_{22} \cdot R_{13} & R_{13} \cdot R_{21} + R_{23} \cdot R_{11} & R_{11} \cdot R_{22} + R_{21} \cdot R_{22} \end{pmatrix}$ (15)

同様に、ひずみテンソルについても考える. 理論せん断ひずみ の場合、次のようになる.

$$[\varepsilon] = [R] \cdot [\varepsilon'] \cdot [R]^T$$
⁽¹⁶⁾

式 (13) と (16) の変換は同じであり,理論せん断ひずみの場 合には変換マトリックスは同じになる.しかし,高橋の FEPM では工学的せん断ひずみが使われているため,垂直ひずみは同 じであるが,せん断ひずみは $\varepsilon = \gamma/2$ になる.これらを考慮して 整理すると次のようになる.

$$[\gamma] = [L_2] \cdot [\gamma'] \tag{17}$$

ここで変換マトリックスL2は, 次のようになる.

	(R_{11}^2)	R_{12}^{2}	R_{13}^{2}	$R_{12} \cdot R_{13}$	$R_{13} \cdot R_{11}$	$R_{11} \cdot R_{12}$
	R_{21}^{2}	R_{22}^{2}	R_{23}^{2}	$R_{22} \cdot R_{23}$	$R_{23} \cdot R_{21}$	$R_{21} \cdot R_{22}$
$[I]_{-}$	R_{31}^{2}	R_{32}^{2}	R_{33}^{2}	$R_{32} \cdot R_{33}$	$R_{33} \cdot R_{31}$	$R_{31} \cdot R_{32}$
[12]-	$2 \cdot R_{21} \cdot R_{31}$	$2 \cdot R_{22} \cdot R_{32}$	$2 \cdot R_{23} \cdot R_{33}$	$R_{22} \cdot R_{33} + R_{32} \cdot R_{23}$	$R_{23} \cdot R_{31} + R_{33} \cdot R_{21}$	$R_{21} \cdot R_{32} + R_{31} \cdot R_{22}$
	$2 \cdot R_{31} \cdot R_{11}$	$2 \cdot R_{32} \cdot R_{12}$	$2 \cdot R_{33} \cdot R_{13}$	$R_{32} \cdot R_{13} + R_{12} \cdot R_{33}$	$R_{33} \cdot R_{11} + R_{13} \cdot R_{31}$	$R_{31} \cdot R_{12} + R_{11} \cdot R_{32}$
	$\left(2\cdot R_{11}\cdot R_{21}\right)$	$2 \cdot R_{12} \cdot R_{22}$	$2 \cdot R_{13} \cdot R_{23}$	$R_{12} \cdot R_{23} + R_{22} \cdot R_{13}$	$R_{13} \cdot R_{21} + R_{23} \cdot R_{11}$	$R_{11} \cdot R_{22} + R_{21} \cdot R_{12}$
						(18)

局所座標系におけるフックの式を考える.

$$[\sigma] = [D] \cdot [\gamma] \tag{19}$$

座標変換して全体座標系に移されるので、式 (19) に式 (14), (17) を代入して整理すると次式が得られる.

$$[\sigma'] = [D'] \cdot [\gamma'] \tag{20}$$

$$\begin{bmatrix} D' \end{bmatrix} = \begin{bmatrix} L_1 \end{bmatrix}^{-1} \cdot \begin{bmatrix} D \end{bmatrix} \cdot \begin{bmatrix} L_2 \end{bmatrix}$$
(21)

全ての結晶粒について式(21)で変換して異方弾性マトリック スD'を作る.式(2)~(4)のDを,得られた異方弾性マトリ ックスD'に変えて,剛性方程式(1)を逐次累積法で解く.降伏 せん断応力を更新し,結晶粒の剛体回転角(Euler角)を求めて, 新しい弾性マトリックスD'を更新して,以降,繰返すことによ り弾性異方性を考慮した計算を行うことができる.なお,式(9) における剛性率Gは、単純に収束計算のパラメータと考え一定 とし、直接入力した D_{121} を用いた.

4. 計算実験

4-1 結晶粒数

計算実験のために必要な結晶粒の個数を検討した.各結晶粒 が弾性異方性であっても,無数の結晶粒がランダム配向すれば, 材料全体としては等方性になる.FEPM では立方体要素 n³ 個の ブロックが連なっているとして計算しており,結晶粒配向を乱 数により与えて n³ 個の配向について等方性が保証されるか確認 した.計算条件として, n=3 (27 個),6 (216 個) について, それぞれ異なる配向(乱数)を5回ずつ与えて,すべり系のは っきりしている FCC について単純引張 20%を行い,応力一ひ ずみ曲線がほぼ一致するか確認した.また,弾性マトリックス は、比較的弾性異方性が大きいなオーステナイト系ステンレス 鋼を考えて、D₁₁₁₁=204.6GPa、D₁₁₂₂=137.7GPa、D₁₂₁₂=126.2GPa を用いた[9]. 異方性の指標として、異方性パラメータが用いら れ、次式で表される.

 $\frac{2D_{1212}}{D_{1111} - D_{1122}} \tag{22}$

異方性パラメータは3.73となり、等方の場合は1となり、比較 的弾性異方性が強い.

図3の計算結果のように、27 個では配向により応力-ひずみ 曲線にばらつきがあるが、216 個では概ね1本の曲線にまとま ったとみなすことができる.よって、計算では立方体要素(結 晶粒数)216 個(6⁶ 個)で計算を行うこととした.

図3 結晶粒数を変えた場合,弾性異方性を考慮した FEPM に 異なる配向を5回与えたときの FCC 単純引張の応カーひずみ 曲線の違い,(a)立方体要素 27 個,(b) 立方体要素 216 個

4-2 異方弾性マトリックスと等方弾性マトリックス

弾性マトリックスが異方性と等方性でマクロ的にどのような 違いがあるか検証を行った.計算条件として,FCC について, 異方性の場合,弾性マトリックスを D₁₁₁₁=204.6GPa, D₁₁₂₂= 137.7GPa, D₁₂₁₂=126.2GPa で与える.等方性の場合, D₁₂₁₂=D₁₁₁₁ -D₁₁₂₂が成り立つので, D₁₁₁₁=204.6GPa, D₁₁₂₂=137.7GPa, D₁₂₁₂ =66.9GPa で与えた.また,結晶粒数は216 個で,配向は乱数で 与えるが,異方性と等方性の配向は同じデータを用いた.

図4 弾性異方性を考慮した FEPM による異方弾性マトリック スと等方弾性マトリックスによる FCC 単純引張の応カーひず み曲線の違い

図4の計算結果のように、等方性に比べて異方性の方が応力 において高い値を示した.これは、弾性異方性による内部応力 の増加により加工硬化したため、応力が上昇したと推測される.

4-3 粒ひずみの挙動

単相多結晶材料に外力、または、内部応力(残留応力)が働 くとき、結晶粒の弾塑性異方性により結晶粒ごとに異なるひず みが発生し、これを粒ひずみと言う. 粒ひずみを測定する方法 の1つとして、その場引張中性子回折実験がある. その場引張 中性子回折実験では TOF (Time-of-flight) 法が使われ, 白色中 性子を引張試験片に照射しながら引張り、 ブラック条件を満足 した中性子線の飛行時間 t を測定して, 既知の飛行距離 x から 中性子の速度 v がわかり、ド・ブロイの式より回折波長 λ を定 める方法である. 白色中性子を使うと、一度に複数の波長が測 定でき,格子定数が与えられていれば,複数の格子面間隔を求 められる. また, 図5に示すように中性子ビームラインと試験 片軸方向は45deg.にすることにより、2つの検出器を使って、引 張軸に垂直な面と平行な面の結晶粒群について同時に測定でき る. 無ひずみ状態の格子面間隔と測定した格子面間隔の差を無 ひずみ状態の格子面間隔で割ることにより、粒ひずみを求める. このその場引張中性子回折実験を念頭に、弾性異方性を考慮し た FEPM を用いて、 粒群の挙動が再現できるか計算実験を行っ た. ここで、その場引張中性子回折実験では格子面間隔を測定 しているため、粒ひずみは弾性ひずみを測定していることにな る. また,結晶粒群ごとの応力は測定できないことに注意が必 要である. すなわち, 実験で得られるのは, 負荷応力に対する 粒群ごとの弾性ひずみ(粒ひずみ)である.

図5 その場引張中性子回折実験における幾何学的な配置

計算条件として、オーステナイト系ステンレス鋼の弾性マト リックス D₁₁₁₁=204.6GPa, D₁₁₂₂=137.7GPa, D₁₂₁₂=126.2GPa を 用いた. その場引張中性子回折実験の引張軸に垂直な面の粒ひ ずみについて計算するとして、各結晶粒の配向は、図6に示す ような Roi 型の Euler 角で与えた. また、結晶粒数 216 個の内、 (111)、(200)、(220)、(311) 各 1 個については、表 1 に示す 配向を与え、残りの結晶粒の配向は乱数により与えた.

図6 Euler角

表1	(111)	,	(200)	,	(220)	,	(311)	の Euler	角に	よる配向
----	-------	---	-------	---	-------	---	-------	---------	----	------

回折面	ϕ (deg.)	θ (deg.)	ψ(deg.)
(111)	0	90	0
(200)	0	90	45
(220)	150	55	45
(311)	90	70	20

また,塑性変形に伴う加工硬化関数(降伏せん断応力を決定 する関数)が必要となる.加工硬化関数は様々な議論,関数が 提案されているが,決定的な関数は無い.ここでは,次のよう な仮定のもとに加工硬化関数を決めた.すなわち Taylor の等方 硬化を仮定し,塑性変形中 Taylor 因子が一定であり,負荷応力 方向と塑性ひずみ増分方向が一定であると仮定することにより, 塑性仕事増分から,次式のような加工硬化関数が得られる[11].

$$H(\dot{\Gamma}) = \left(\frac{F}{M_0^{n+1}}\right) \cdot \dot{\Gamma}^n \tag{23}$$

ここで、 $H, \dot{\Gamma}, n, F, M_0$ は、それぞれ加工硬化関数、マクロ なせん断ひずみ増分、加工硬化指数、n 乗硬化式の定数項、Taylor 因子 (FCC の場合、3.07) である.引張による真応力—真ひず み曲線を n 乗硬化式に最小二乗法で近似すると、加工硬化指数 n と定数項 F を求めることができるので、式(23) より加工硬 化関数を決定した.

以上の計算条件で、粒ひずみを算出した結果を図7に示す. 負荷直後から負荷応力に対して粒ひずみが直線的に変化してい るが、粒により異なる傾きを示してる.負荷応力が 600MPa に 達すると粒ひずみの挙動が変化しており、マクロな降伏応力も 約 600MPa であることから、マクロ的には 600MPa 以下が弾性 域、それ以上は塑性域と考えられる.マクロな弾性域では、粒 により異なる挙動を示しており、弾性異方性による挙動の違い が再現できた.マクロな塑性域では、(111) や(220) 粒は、 負荷応力が増加しても粒ひずみの変化が少ないのに対して、

(200)と(311)粒は粒ひずみが増加している.すなわち,(111) や(220)粒は、ミクロな降伏をして塑性変形が進行し、加工硬 化している考えら、一方、(200)や(311)粒は、ミクロ降伏 した(111)や(220)粒が耐えられなかった応力を受け持ち、 粒ひずみが増加していると考えられる、すなわち、応力分配が 起こっていると考えられる.以上の挙動は、その場引張中性子 回折実験の結果でも確認されている[8],[9].よって、弾塑性異方 性を考慮した FEPM により、粒ひずみを再現できたと考えられ る.

図 7 オーステナイト系ステンレス鋼の負荷応力に対する粒ひ ずみの変化

5 結言

異方弾性マトリックスと回転行列を使いFEPMを改良し,弾 性異方性を考慮した有限要素多結晶モデルを作成した.

計算実験より,各結晶粒が弾性異方性であっても,無数の結 晶粒がランダム配向すれば材料全体としては等方性になるが, 異なる配向(乱数)を5回ずつ与えて計算実験を行った結果, 結晶粒数216個あれば概ね同じ応力-ひずみ曲線が得られた. また,結晶粒数 216 個で同じ結晶配向でも,異方弾性マトリッ クスと等方弾性マトリックスでは,等方性に比べて異方性の方 が応力について高い値を示した.すなわち異方性による内部応 力の増加により加工硬化したため,応力が上昇したと推測され る.さらに,オーステナイト系ステンレス鋼のその場引張中性 子回折実験を念頭に,粒ひずみ (111),(200),(220),(311) を算出した結果,マクロ的な弾性域で,各粒は異なった挙動を 示し,弾性異方性による挙動の違いを再現することができた. また,マクロな降伏領域では,ミクロ降伏した (111) や (220) 粒が耐えられなかった応力を,降伏していない (200) や (311) 粒が受け持つ,応力分配と考えられる挙動を確認できた.これ らは,オーステナイト系ステンレス鋼のその場引張中性子回折 実験の結果と同様の傾向を示している.以上より,弾塑性異方 性を考慮した有限要素多結晶モデルにより,粒ひずみを再現で きたと考えられる.

参考文献

[1] G.I.Taylor : Plastic strain in metals, J.Inst. Met., 62, pp.307-324, 1938

[2] J.F.W. Bishop and R. Hill : A theory of the plastic dislocation of a polycrystalline aggregate under combined stresses, A theoretical derivation of the plastic properties of a polycrystalline face centered metals, Phil. Mag., 42, pp.414-427, pp.1298-1307, 1951

[3] Sachs, G., Z. Verein. Deutsch. Ing., 72, 734, 1928.

[4] 宮本博,石島洋二,三好俊郎:材料の構成要素からみ た機械的特性,機誌,75, pp.89-97,1972

[5] 神馬敬,室田忠雄,一柳高時:金属結晶の応力・ひずみ剛性マトリックスとその応用,機誌,75,pp.116-121,1972
[6] 高橋寛,増子実,本橋元 ほか:アルミニウム板塑性異方性の有限要素多結晶モデルによる予測(第1報 有限要素多結晶モデル),機論,A60, pp.1017-1022,1994

 [7] H. Takahashi, H. Motohashi and S. Tsuchida: Elastic-plastic
 Finite Element Polycrystal Model, Int. J. Plasticity, 10, pp.63-80, 1994

[8] M.Ojima , Y. Adachi , Yo Tomota et al. : Work hardening mechanism in high nitrogen austenitic steel studied by in situ neutron diffraction and in situ electron backscattering diffraction, Materials Science and Engineering, A 527,pp. 16–24, 2009

[9] B.Clausen, T.Lorentzen and T.Leffers: Self-consistent modelling of the plastic deformation of F.C.C polycrystals and its implications for diffraction measurements of internal stresses, Acta mater., 46, pp.3087-3098, 1998

[10] 大貫貴久,友田陽:弾塑性異方性を考慮した多結晶金属の不均一変形挙動の考察,日本鉄鋼協会第154回秋季大会,p.1094,2012

[11] 高橋寛:多結晶塑性論,コロナ社, p.81, 1999